RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2016, том 7, выпуск 2, страницы 315–323 (Mi nano204)

Эта публикация цитируется в 3 статьях

INVITED SPEAKERS

Laplacians with singular perturbations supported on hypersurfaces

A. Mantilea, A. Posilicanob

a Laboratoire de Mathématiques de Reims, EA4535 URCA, Fédération de Recherche ARC Mathématiques, FR 3399 CNRS, France
b DiSAT, Sezione di Matematica, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy

Аннотация: We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the $n$-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This allows one to obtain Krein-like resolvent formulae where the reference operator coincides with the free self-adjoint Laplacian in $\mathbb{R}^n$, providing in this way with an useful tool for the scattering problem from a hypersurface. As examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on an unclosed hypersurface.

Ключевые слова: Krein's resolvent formula, boundary conditions, self-adjoint extensions.

PACS: 02.30.Tb, 02.30.Jr

Поступила в редакцию: 02.03.2016

Язык публикации: английский

DOI: 10.17586/2220-8054-2016-7-2-315-323



Реферативные базы данных:


© МИАН, 2025