RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2019, том 10, выпуск 5, страницы 511–519 (Mi nano464)

MATHEMATICS

Analytic description of the essential spectrum of a family of $3\times 3$ operator matrices

T. H. Rasulov, N. A. Tosheva

Faculty of Physics and Mathematics, Bukhara State University M. Ikbol str. 11, 200100 Bukhara, Uzbekistan

Аннотация: We consider the family of $3\times 3$ operator matrices $H(K)$, $K\in \mathbb{T}^d:= (-\pi;\pi]^d$ arising in the spectral analysis of the energy operator of the spin-boson model of radioactive decay with two bosons on the torus $\mathbb{T}^d$. We obtain an analog of the Faddeev equation for the eigenfunctions of $H(K)$. An analytic description of the essential spectrum of $H(K)$ is established. Further, it is shown that the essential spectrum of $H(K)$ consists the union of at most three bounded closed intervals.

Ключевые слова: family of operator matrices, generalized Friedrichs model, bosonic Fock space, annihilation and creation operators, channel operator, decomposable operator, fiber operators, the Faddeev equation, essential spectrum, Weyl criterion.

Поступила в редакцию: 06.10.2019

Язык публикации: английский

DOI: 10.17586/2220-8054-2019-10-5-511-519



Реферативные базы данных:


© МИАН, 2024