RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2020, том 11, выпуск 2, страницы 138–144 (Mi nano507)

Эта публикация цитируется в 7 статьях

MATHEMATICS

Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics

T. H. Rasulov, E. B. Dilmurodov

Faculty of Physics and Mathematics, Bukhara State University, M. Ikbol str. 11, 200100 Bukhara, Uzbekistan

Аннотация: We consider a $2\times 2$ operator matrix $A_{\mu}$, $\mu>0$ related with the lattice systems describing two identical bosons and one particle, another nature in interactions, without conservation of the number of particles. We obtain an analog of the Faddeev equation and its symmetric version for the eigenfunctions of $A_{\mu}$. We describe the new branches of the essential spectrum of $A_{\mu}$ via the spectrum of a family of generalized Friedrichs models. It is established that the essential spectrum of $A_{\mu}$ consists the union of at most three bounded closed intervals and their location is studied. For the critical value $\mu_{0}$ of the coupling constant $\mu$ we establish the existence of infinitely many eigenvalues, which are located in the both sides of the essential spectrum of $A_{\mu}$. In this case, an asymptotic formula for the discrete spectrum of $A_{\mu}$ is found.

Ключевые слова: operator matrix, bosonic Fock space, coupling constant, dispersion function, essential and discrete spectrum, Birman–Schwinger principle, spectral subspace, Weyl creterion.

Поступила в редакцию: 30.12.2019
Исправленный вариант: 17.02.2020

Язык публикации: английский

DOI: 10.17586/2220-8054-2020-11-2-138-144



Реферативные базы данных:


© МИАН, 2024