RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2020, том 11, выпуск 3, страницы 275–284 (Mi nano524)

MATHEMATICS

Approximate analytical method for finding eigenvalues of Sturm–Liouville problem with generalized boundary condition of the third kind

V. D. Lukyanova, D. A. Bulekbaevb, A. V. Morozovb, L. V. Nosovab

a Joint-Stock Company “Avangard”, Kondrat'evsky, 72, St. Petersburg, 195271, Russia
b Mozhaisky Military Space Academy, Zhdanovskaya, 13, St. Petersburg, 197198, Russia

Аннотация: The Sturm–Liouville problem is solved for a linear differential second-order equation with generalized boundary conditions of the third kind Generalized boundary conditions consist of a linear combination of the boundary values of a function and its derivative. The coefficients of the linear combination are polynomials of the boundary problem eigenvalue. A method of approximate analytical calculation of boundary problem eigenvalues is proposed The calculation error of an eigenvalue is estimated.

Ключевые слова: Sturm-Liouville problem, boundary conditions of the third kind, eigenfunctions, eigenvalues, approximation.

Поступила в редакцию: 21.06.2020

Язык публикации: английский

DOI: 10.17586/2220-8054-2020-11-3-275-284



Реферативные базы данных:


© МИАН, 2025