Аннотация:
Нелинейное уравнение Шредингера (НУШ) имеет многочисленные приложения в математической физике (нелинейная оптика, теория волн и другие). Алгебра симметрии $L_{12}$ и оптимальная система подалгебр для НУШ построена Ганьоном и Винтерницем (1989). Она является центральным расширением алгебры Галилея $L_{11}$, допускаемой уравнениями газовой динамики. На основе анализа универсальных инвариантов оптимальной системы подалгебр доказано, что трехмерные алгебры симметрии НУШ порождают 27 существенно различных подмоделей. В работе получен перечень инвариантных и частично инвариантных решений НУШ, отвечающих существенно трехмерным нелинейным структурам. Большинство этих решений является существенно новыми и не исследовались ранее. Их изучение является перспективным для таких приложений, как нелинейная теория волн, конденсат Бозе–Эйнштейна и др.
Ключевые слова:уравнение Шредингера, алгебра Ли, инвариантное и частично инвариантное решения, фактор-система.