Аннотация:
В работе рассмотрена задача о качении динамически несимметричного уравновешенного шара (шара Чаплыгина) по поверхности сферы. Предполагается, что при качении равна нулю скорость точки контакта и проекция угловой скорости шара на нормаль к сфере. Эта модель качения без проскальзывания отличается от классической и в некотором приближении реализуется, если поверхность шара является резиновой, а сфера абсолютно шероховатой. Койлером и Ойлерсом для этой задачи недавно была указана мера и гамильтонова структура. Используя эту структуру мы строим изоморфизм этой задачи с задачей о движении точки по сфере в некотором потенциальном поле и указываем интегрируемые случаи.
Ключевые слова:Шар Чаплыгина, модель качения, гамильтонова структура.