Аннотация:
Недавно в работе [1] были обнаружены подковы Смейла новых типов, так называемые полуориентируемые подковы. Они существуют у эндоморфизмов диска и у диффеоморфизмов неориентируемых двумерных многообразий. Эти подковы обладают интересными свойствами, отличными от свойств классических подков. Например, они могут иметь граничные точки любых периодов. Отсюда можно вывести, что существует бесконечно много типов подков, которые не являются локально топологически сопряженными. Для доказательства этого и других результатов в работе эффективно используется конструктивный геометрический метод.