Аннотация:
Работа посвящена вопросам динамики жидких и газовых самогравитирующих эллипсоидов. Приводятся обзор литературы и оригинальные результаты авторов в этой области, полученные с помощью современных методов нелинейной динамики. Дается четкая лагранжева и гамильтопова формулировка уравнений движения, в частности описан гамильгонов формализм на алгебрах Ли. Формулируются и исследуются задачи, связанные с неинтегрируемостью и хаосом. Мы классифицируем все известные интегрируемые случаи, а также приводим наиболее естественные гипотезы относительно неинтегрируемости уравнений движения в общем случае. Приводятся результаты численного моделирования, которые, с одной стороны, показывают хаотическое поведение системы, а с другой стороны во многих ситуациях могут служить численным компьютерным доказательством неинтегрируемости (метод траневерсально пересекающихся сепаратрис).
Ключевые слова:жидкие и газовые самогравитирующие эллипсоиды, интегрируемость, хаотическое поведение.