Аннотация:
Нелокальные обобщения нелинейного волнового уравнения возникают в целом ряде задач современной математической физики. Известно, что при переходе от локального к нелокальному описанию модель может приобретать новые свойства, в частности, могут возникать новые типы решений. В данной работе исследуется вопрос о размерности множества решений типа бегущих волн нелокального нелинейного волнового уравнения. Нелокальность при этом представлена оператором типа свертки, который заменяет оператор второй производной в дисперсионном члене. Основные результаты получены для случая, когда нелинейность ограничена, а ядро оператора представлено суммой экспонент с весами (так называемое ядро $E$-типа). В простейшем частном случае (ядро Каца–Бейкера) показано, что решения данного уравнения образуют непрерывное трехпараметрическое семейство (считая, что решения, переходящие друг в друга при сдвиге по независимой переменной, не различаются). Далее показано, что трехпараметрическое семейство решений, вообще говоря, сохраняется и в случае ядра $E$-типа общего вида, при выполнении некоторых дополнительных условий. Выражение «вообще говоря» в данном случае означает трансверсальность пересечения некоторых многообразий в надлежащим образом введенном фазовом пространстве.