Аннотация:
Рассматривается задача об орбитальной устойчивости плоских периодических движений динамически симметричного тяжелого твердого тела с одной неподвижной точкой. Предполагается, что центр масс тела лежит в экваториальной плоскости эллипсоида инерции. Невозмущенное периодическое движение представляет собой плоские маятниковые колебания или вращения тела, при которых одна из его главных осей инерции сохраняет неизменное горизонтальное положение.
В окрестности невозмущенного периодического движения введены локальные координаты, и уравнения возмущенного движения записаны в гамильтоновой форме. На основе линейного анализа найдены области орбитальной неустойчивости. Вне указанных областей выполнен нелинейный анализ с учетом членов до четвертой степени включительно в разложении функции Гамильтона в ряд в окрестности невозмущенного движения. Нелинейная задача об орбитальной устойчивости сведена к анализу устойчивости неподвижной точки симплектического отображения, генерируемого системой уравнений возмущенного движения. Коэффициенты симплектического отображения определялись численно. На основе их анализа получены строгие выводы об орбитальной устойчивости или неустойчивости невозмущенного движения. Орбитальная устойчивость исследована аналитически в двух предельных случаях: колебания с малыми амплитудами и вращения с большими угловыми скоростями, когда удается ввести малый параметр.