RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Нелинейная динам., 2013, том 9, номер 3, страницы 547–566 (Mi nd405)

Эта публикация цитируется в 1 статье

Динамика неголономных систем, состоящих из сферической оболочки с подвижным твердым телом внутри

И. А. Бизяевab, А. В. Борисовabcd, И. С. Мамаевabcd

a Институт компьютерных исследований
b Лаборатория нелинейного анализа и конструирования новых средств передвижения, Удмуртский государственный университет, 426034, Россия, г. Ижевск, ул. Университетская, д. 1
c Институт машиноведения им. А. А. Благонравова РАН, 117334, Россия, г. Москва, ул. Бардина, д. 4
d Институт математики и механики УрО РАН, 620990, Россия, г. Екатеринбург, ул. Софьи Ковалевской, д. 16

Аннотация: В работе исследованы две системы, состоящие из сферической оболочки, катящейся по плоскости без проскальзывания, и подвижного твердого тела, закрепленного внутри оболочки при помощи двух различных механизмов. В первом случае твердое тело закреплено в центре шара на сферическом шарнире. Указан изоморфизм уравнений движения внутреннего тела с движением шара по гладкой плоскости. Во втором случае твердое тело закреплено с помощью неголономного шарнира. Получены уравнения движения для этой системы и указаны новые интегрируемые случаи. Особенность набора тензорных инвариантов данной системы заключается в том, что он приводит к новому в неголономной механике механизму интегрирования — теореме Эйлера–Якоби–Ли.
Кроме того, рассмотрена задача о свободном движении связки двух тел, соединенных неголономным шарниром. Для этой системы найдены интегрируемые случаи, а также различные тензорные инварианты.

Ключевые слова: неголономная связь, тензорные инварианты, изоморфизм, неголономный шарнир.

УДК: 531.38

MSC: 70E18, 37J60, 37J35

Поступила в редакцию: 04.09.2013
Исправленный вариант: 31.10.2013



© МИАН, 2024