RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Нелинейная динам., 2015, том 11, номер 1, страницы 3–49 (Mi nd463)

Эта публикация цитируется в 7 статьях

Движение падающей пластины в жидкости: конечномерные модели и феномены сложной нелинейной динамики

С. П. Кузнецов

Институт радиотехники и электроники им. В. А. Котельникова РАН, Саратовский филиал, 410019, г. Саратов, ул. Зеленая, д. 38

Аннотация: Представлен обзор результатов исследования плоской задачи о падении пластинки в сопротивляющейся среде на основе моделей в виде обыкновенных дифференциальных уравнений относительно небольшого числа переменных. Введена в рассмотрение обобщенная модель, в рамках которой с использованием одной и той же системы безразмерных переменных и параметров удается провести сравнительный анализ динамического поведения для моделей Козлова, Танабе–Канеко, Бельмонте–Айзенберга–Мозеса и Андерсена–Песавенто–Ванга. Показано, что общая структура устройства пространства параметров для разных моделей имеет определенное сходство, обусловленное, очевидно, одинаковой присущей симметрией и общей природой вовлеченных феноменов нелинейной динамики (неподвижные точки, предельные циклы, аттракторы, бифуркации). Для задачи о движении тела эллиптического профиля в вязкой среде в присутствии циркуляции вектора скорости и приложенного постоянного вращающего момента обнаружено присутствие странного аттрактора Лоренца в трехмерном пространстве обобщенных скоростей.

Ключевые слова: движение тела в жидкости, автоколебания, авторотация, флаттер, аттрактор, бифуркация, хаос, показатель Ляпунова.

УДК: 517.9, 532.3, 534.14, 519.622

MSC: 34C15, 76D99, 37E99

Поступила в редакцию: 22.12.2014
Исправленный вариант: 16.01.2015



Реферативные базы данных:


© МИАН, 2024