Аннотация:
Исследуется периодическая по времени система с одной степенью свободы. Предполагается, что она имеет положение равновесия, в окрестности которого функция Гамильтона системы представима сходящимся рядом, в котором нет членов второй степени, а члены до некоторой конечной степени $\ell$ не зависят явно от времени. Предлагается алгоритм построения канонического преобразования, упрощающего структуру функции Гамильтона до членов степени $\ell$ включительно.
В качестве приложения рассмотрен один особый случай, когда разложение функции Гамильтона начинается с членов третьей степени. Для этого случая получены достаточные условия неустойчивости положения равновесия по формам четвертой и пятой степеней.