RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Нелинейная динам., 2017, том 13, номер 1, страницы 25–40 (Mi nd549)

Эта публикация цитируется в 4 статьях

Оригинальные статьи

Об одном конструктивном методе поиска ротационных и автоколебательных режимов в автономных динамических системах

Л. А. Климина, Б. Я. Локшин

НИИ механики МГУ, 119192, Россия, г. Москва, Мичуринский пр., д. 1

Аннотация: Рассматривается автономная динамическая система с одной степенью свободы с цилиндрической фазовой поверхностью, близкая к гамильтоновой. Математическая модель системы сводится к дифференциальному уравнению второго порядка, которое содержит слагаемые, отвечающие неконсервативным силам. Коэффициент $\alpha$ при таких слагаемых считается малым параметром модели.
В первой части работы дополнительно предполагается, что одно из упомянутых слагаемых отвечает диссипативным либо антидиссипативным силам, причем коэффициент $b$ при этом слагаемом является варьируемым параметром модели. На основе метода Пуанкаре – Понтрягина описаны свойства бифуркационной диаграммы, характеризующей периодические траектории системы в зависимости от параметра $b$ при достаточно малых значениях $\alpha$.
Во второй части работы рассматривается система с неконсервативными силами общего вида, то есть снято ограничение, наложенное в первой части. Построение двух вспомогательных систем специального вида и применение для них результатов, полученных в первой части работы, позволило вывести необходимые условия существования периодических траекторий в исходной системе общего вида при достаточно малых значениях $\alpha$.
В третьей части обсуждается пример исследования периодических траекторий конкретной системы, которая при нулевом значении малого параметра совпадает с гамильтоновой системой $H_0$. Доказано существование периодических траекторий, которые не удовлетворяют достаточным условиям Пуанкаре – Понтрягина возникновения периодических траекторий из траекторий порождающей системы $H_0$.

Ключевые слова: автономная динамическая система, метод Пуанкаре – Понтрягина, достаточные условия существования периодических траекторий, бифуркационная диаграмма, необходимые условия существования периодических траекторий.

УДК: 531.36

MSC: 70K05

Поступила в редакцию: 03.09.2016
Принята в печать: 23.12.2016

DOI: 10.20537/nd1701003



Реферативные базы данных:


© МИАН, 2024