Аннотация:
В работе рассмотрен случай Гесса в уравнениях Эйлера–Пуассона, а также его обобщение на пучке скобок Пуассона. Показано, что в этом случае задача сводится к исследованию векторного поля на торе. При этом график зависимости числа вращения от параметров имеет горизонтальные участки (предельные циклы) только при целых значениях числа вращения. Кроме того, указан пример гамильтоновой системы, которая обладает инвариантным подмногообразием (аналогичным случаю Гесса), но на котором зависимость числа вращения от параметров представляет собой канторову лестницу.
Ключевые слова:инвариантное подмногообразие, число вращения, канторова лестница, предельные циклы.