Аннотация:
Рассматриваются движения неавтономной периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности положения равновесия. Предполагается, что гамильтониан системы зависит от двух параметров $\varepsilon$ и $\alpha$, причем параметр $\varepsilon$ мал и при $\varepsilon=0$ система автономна. Предполагается также, что при $\varepsilon=0$ для некоторых значений $\alpha$ одна из частот малых линейных колебаний системы в окрестности положения равновесия является целым или полуцелым числом, а другая равна нулю, то есть в системе реализуется кратный параметрический резонанс. Рассмотрен случай, когда ранг матрицы линеаризованных при $\varepsilon=0$ в окрестности положения равновесия уравнений возмущенного движения равен трем. При достаточно малых (но отличных от нуля) $\varepsilon$ для значений $\alpha$, близких к резонансным, решен вопрос о существовании, бифуркациях и устойчивости (в линейном приближении) периодических движений системы. В качестве приложения для случаев кратных резонансов рассматриваемого типа построены периодические движения симметричного спутника в окрестности его цилиндрической прецессии на слабоэллиптической орбите.