Аннотация:
В рамках так называемого спутникового приближения, когда задается эллиптическое кеплерово движение центра масс спутника (или тесной группы космических аппаратов), а относительное движение системы предполагается не влияющим на ее орбитальное движение, строятся конфигурации относительного равновесия и анализируется устойчивость этих конфигураций. Предполагается, что главные центральные оси инерции спутниковой системы движутся как твердое тело, а массы могут перераспределяться так, что могут меняться моменты инерции. Таким образом, вся конфигурация может совершать пульсирующие движения, меняясь в размерах.
Выводится система уравнений движения такого составного спутника. Показано, что эта система во многом аналогична известному уравнению В. В. Белецкого плоских колебаний спутника на эллиптической орбите. Как и в упомянутом уравнении, здесь в качестве независимой переменной используется истинная аномалия. Оказалось, что в задаче имеются плоские маятниковые качания всей системы, которые при малых значениях эксцентриситета орбиты центра масс можно рассматривать как возмущения математического маятника.
В этом случае можно ввести переменные действие – угол и рассмотреть динамику отображений за период неавтономного возмущения. В итоге оказалось возможным применить известную теорему Мозера об инвариантой кривой для закручивающих отображений кольца и получить общую картину движения в случае плоских колебаний системы. Таким образом, все изложение в статье распадается на две темы: а) общий динамический анализ плоского относительного движения спутника с использованием КАМ-теории; б) конструирование семейств периодических решений, зависящих от параметра возмущения и «растущих» из положения равновесия вместе с ростом величины возмущения. Последние семейства зависят от параметра возмущения и отсутствуют в невозмущенной задаче.
Ключевые слова:КАМ-теория, теорема Мозера об инвариантной кривой, переменные действие - угол, периодические решения, аналитические разложения.