Аннотация:
Предложена процедура построения приближенного периодического решения уравнений движения вязкой жидкости в неограниченной области в классе кусочно-гладких функций при заданном градиенте давления и температуры при малых числах Рейнольдса. Процедура сводится к разбиению области жидкости на ячейки, в которых ищется решение с граничными условиями, соответствующими периодической функции. Рассмотрены случаи двух- и трехмерных течений вязкой жидкости. Найдено, что полученное решение можно рассматривать как течение через периодическую систему точечных частиц, помещенных в углах ячеек. Получено, что при периодическом течении расход жидкости через единицу площади поперечного сечения меньше, чем при течении Пуазёйля.