RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Нелинейная динам., 2018, том 14, номер 2, страницы 217–234 (Mi nd609)

Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet

L. A. Kalyakin

Institute of mathematics USC RAS, ul. Chernyshevskogo 112, Ufa, 450008 Russia

Аннотация: This paper is concerned with a system of three nonlinear differential equations, which is a mathematical model for a system of nuclear spins in an antiferromagnet. The model has arisen in recent physical studies and differs from the well-known and well-understood Landau–Lifshitz and Bloch models in the manner of incorporating dissipation effects. It is established that the system under consideration is related to the Landau–Lifshitz system by the passage to the limit only on one invariant sphere. The initial equations contain three dimensionless parameters. Equilibrium points and their stability are examined depending on these parameters. The position of the bifurcation surface is found in the parameter space. It is proved that the corresponding equilibrium is of saddle-node type. Exact statements are illustrated by results of numerical experiments.

Ключевые слова: nonlinear equations, equilibrium, stability, bifurcation.

MSC: 34C23, 34D20

Поступила в редакцию: 14.12.2017
Принята в печать: 31.01.2018

Язык публикации: английский

DOI: 10.20537/nd180206



Реферативные базы данных:


© МИАН, 2024