RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Нелинейная динам., 2018, том 14, номер 2, страницы 243–263 (Mi nd611)

Эта публикация цитируется в 3 статьях

On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point

M. V. Belichenko

Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia

Аннотация: This paper addresses the motion of a Lagrange top in a homogeneous gravitational field under the assumption that the suspension point of the top undergoes high-frequency vibrations with small amplitude in three-dimensional space. The laws of motion of the suspension point are supposed to allow vertical relative equilibria of the top’s symmetry axis. Within the framework of an approximate autonomous system of differential equations of motion written in canonical Hamiltonian form, pendulum-type motions of the top are considered. For these motions, its symmetry axis performs oscillations of pendulum type near the lower, upper or inclined relative equilibrium positions, rotations or asymptotic motions. Integration of the equation of pendulum motion of the top is carried out in the whole range of the problem parameters. The question of their orbital linear stability with respect to spatial perturbations is considered on the isoenergetic level corresponding to the unperturbed motions. The stability evolution of oscillations and rotations of the Lagrange top depending on the ratios between the intensities of the vertical, horizontal longitudinal and horizontal transverse components of vibration is described.

Ключевые слова: Lagrange’s top, high-frequency vibrations, pendulum-type motions, stability.

MSC: 70E17, 70E50, 70H09, 70H14

Поступила в редакцию: 12.02.2018
Принята в печать: 04.05.2018

Язык публикации: английский

DOI: 10.20537/nd180208



Реферативные базы данных:


© МИАН, 2024