RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2019, том 15, номер 4, страницы 457–475 (Mi nd673)

Эта публикация цитируется в 1 статье

Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$

B. Gajić, B. Jovanović

Mathematical Institute SANU, Kneza Mihaila 36, 11000, Belgrade, Serbia

Аннотация: We consider the nonholonomic problem of rolling without slipping and twisting of a balanced ball over a fixed sphere in $\mathbb{R}^n$. By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover, this is a $SO(n)$-Chaplygin system that reduces to the cotangent bundle $T^*S^{n-1}$. We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system. In the second case, we consider the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, ${I=diag(I_1,\ldots,I_n)}$ with a symmetry $I_1=I_2=\ldots=I_{r} \ne I_{r+1}=I_{r+2}=\ldots=I_n$. It is shown that general trajectories are quasi-periodic, while for $r\ne 1$, $n-1$ the Chaplygin reducing multiplier method does not apply.

Ключевые слова: nonholonomic Chaplygin systems, invariant measure, integrability.

MSC: 37J60, 37J15, 70E18

Поступила в редакцию: 26.06.2019
Принята в печать: 28.08.2019

Язык публикации: английский

DOI: 10.20537/nd190405



Реферативные базы данных:


© МИАН, 2024