Аннотация:
It is well known that the maximal value of the central moment of inertia of a closed homogeneous thread of fixed length is achieved on a curve in the form of a circle. This isoperimetric property plays a key role in investigating the stability of stationary motions of a flexible thread. A discrete variant of the isoperimetric inequality, when the mass of the thread is concentrated in a finite number of material particles, is established. An analog of the isoperimetric inequality for an inhomogeneous thread is proved.
Ключевые слова:moment of inertia, Sundman and Wirtinger inequalities, articulated polygon.