RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2019, том 15, номер 4, страницы 569–575 (Mi nd684)

Эта публикация цитируется в 1 статье

Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems

A. V. Podobryaev

Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia

Аннотация: We consider left-invariant optimal control problems on connected Lie groups. We describe the symmetries of the exponential map that are induced by the symmetries of the vertical part of the Hamiltonian system of the Pontryagin maximum principle. These symmetries play a key role in investigation of optimality of extremal trajectories. For connected Lie groups such that the generic coadjoint orbit has codimension not more than 1 and a connected stabilizer we introduce a general construction for such symmetries of the exponential map.

Ключевые слова: symmetry, geometric control theory, Riemannian geometry, sub-Riemannian geometry.

MSC: 49J15, 53C17

Поступила в редакцию: 28.05.2019
Принята в печать: 09.09.2019

Язык публикации: английский

DOI: 10.20537/nd190416



Реферативные базы данных:


© МИАН, 2024