RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2019, том 15, номер 4, страницы 593–609 (Mi nd687)

Эта публикация цитируется в 1 статье

Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite

E. A. Sukhov

Moscow aviation institute (National Research University), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia

Аннотация: We deal with motions of a dynamically symmetric rigid-body satellite about its center of mass in a central Newtonian gravitational field. In this case the equations of motion possess particular solutions representing the so-called regular precessions: cylindrical, conical and hyperboloidal precession. If a regular precession is stable there exist two types of periodic motions in its neighborhood: short-periodic motions with a period close to $2\pi / \omega_2$ and long-periodic motions with a period close to $2 \pi / \omega_1$ where $\omega_2$ and $\omega_1$ are the frequencies of the linearized system ($\omega_2 > \omega_1$).
In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.

Ключевые слова: Hamiltonian mechanics, satellite dynamics, bifurcations, periodic motions, orbital stability.

MSC: 93B18, 93B52

Поступила в редакцию: 20.06.2019
Принята в печать: 20.10.2019

Язык публикации: английский

DOI: 10.20537/nd190419



Реферативные базы данных:


© МИАН, 2024