RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 1, страницы 181–194 (Mi nd705)

Mathematical problems of nonlinearity

Intrinsic Shape Property of Global Attractors in Metrizable Spaces

N. Shekutkovski, M. Shoptrajanov

Ss. Cyril and Methodius University, Arhimedova St. 3, Skopje 1000, R.N.Macedonia

Аннотация: This paper concerns the connection between shape theory and attractors for semidynamical systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework to study the global properties which the attractor inherits from the phase space. Namely, following [6] we’ll improve some of the previous results about the shape of global attractors in arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.

Ключевые слова: intrinsic shape, regular covering, continuity over a covering, attractor, proximate net.

MSC: 54H20, 54C56, 37B20, 37B25

Поступила в редакцию: 12.07.2019
Принята в печать: 02.12.2019

Язык публикации: английский

DOI: 10.20537/nd200114



Реферативные базы данных:


© МИАН, 2024