RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 2, страницы 369–378 (Mi nd716)

Эта публикация цитируется в 2 статьях

Mathematical problems of nonlinearity

On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems

A. D. Morozov, K. E. Morozov

Lobachevsky State University of Nizhni Novgorod, prosp. Gagarina 23, Nizhni Novgorod, 603950 Russia

Аннотация: We study nonconservative quasi-periodic $m$-frequency $\it parametric$ perturbations of twodimensional nonlinear Hamiltonian systems. Our objective is to specify the conditions for the existence of new regimes in resonance zones, which may arise due to parametric terms in the perturbation. These regimes correspond to $(m+1)$-frequency quasi-periodic solutions, which are not generated from Kolmogorov tori of the unperturbed system. The conditions for the existence of these solutions are found. The study is based on averaging theory and the analysis of the corresponding averaged systems. We illustrate the results with an example of a Duffing type equation.

Ключевые слова: resonances, quasi-periodic, parametric, averaging method, limit cycles, invariant torus, phase curves, equilibrium states.

MSC: 34C15, 34C27, 34C37

Поступила в редакцию: 20.02.2020
Принята в печать: 29.04.2020

Язык публикации: английский

DOI: 10.20537/nd200210



Реферативные базы данных:


© МИАН, 2024