RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 3, страницы 421–436 (Mi nd719)

Эта публикация цитируется в 1 статье

Nonlinear physics and mechanics

Control of an Inverted Wheeled Pendulum on a Soft Surface

O. M. Kiselev

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Science, ul. Chernyshevskogo 112, Ufa, 450008 Russia

Аннотация: The dynamics of an inverted wheeled pendulum controlled by a proportional plus integral plus derivative action controller in various cases is investigated. The properties of trajectories are studied for a pendulum stabilized on a horizontal line, an inclined straight line and on a soft horizontal line. Oscillation regions on phase portraits of dynamical systems are shown. In particular, an analysis is made of the stabilization of the pendulum on a soft surface, modeled by a differential inclusion. It is shown that there exist trajectories tending to a semistable equilibrium position in the adopted mathematical model. However, in numerical simulations, as well as in the case of real robotic devices, such trajectories turn into a limit cycle due to round-off errors and perturbations not taken into account in the model.

Ключевые слова: pendulum, control, stability, differential inclusion.

MSC: 37N35, 70E60, 70Q05

Поступила в редакцию: 16.12.2019
Принята в печать: 19.05.2020

Язык публикации: английский

DOI: 10.20537/nd200302



Реферативные базы данных:


© МИАН, 2025