RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 4, страницы 581–594 (Mi nd730)

Эта публикация цитируется в 2 статьях

Nonlinear physics and mechanics

On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body

B. S. Bardinab

a Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
b Mechanical Engineering Research Institute of the Russian Academy of Sciences, M. Kharitonyevskiy per. 4, Moscow, 101990 Russia

Аннотация: A method is presented of constructing a nonlinear canonical change of variables which makes it possible to introduce local coordinates in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. The problem of the orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev – Steklov case is discussed as an application. The nonlinear analysis of orbital stability is carried out including terms through degree six in the expansion of the Hamiltonian function in a neighborhood of the unperturbed periodic motion. This makes it possible to draw rigorous conclusions on orbital stability for the parameter values corresponding to degeneracy of terms of degree four in the normal form of the Hamiltonian function of equations of perturbed motion.

Ключевые слова: rigid body, rotations, oscillations, orbital stability, Hamiltonian system, local coordinates, normal form.

MSC: 34D20, 37J40, 70K30, 70K45, 37N05

Поступила в редакцию: 07.12.2020
Принята в печать: 25.12.2020

DOI: 10.20537/nd200404



Реферативные базы данных:


© МИАН, 2024