RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 4, страницы 651–672 (Mi nd735)

Эта публикация цитируется в 2 статьях

Mathematical problems of nonlinearity

Cherry Maps with Different Critical Exponents: Bifurcation of Geometry

B. Ndawa Tangue

Institute of Mathematics and Physical Sciences Avakpa, Porto-Novo, 613 Benin

Аннотация: We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$.
We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1 \backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.

Ключевые слова: circle map, irrational rotation number, flat piece, critical exponent, geometry, Hausdorff dimension.

MSC: 37E10

Поступила в редакцию: 01.09.2020
Принята в печать: 27.10.2020

DOI: 10.20537/nd200409



Реферативные базы данных:


© МИАН, 2024