RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2021, том 17, номер 2, страницы 157–164 (Mi nd747)

Mathematical problems of nonlinearity

On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors

Y. V. Bakhanova, A. A. Bobrovsky, T. K. Burdygina, S. M. Malykh

National Research University “Higher School of Economics”, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

Аннотация: We study spiral chaos in the classical Rцssler and Arneodo –Coullet –Tresser systems. Special attention is paid to the analysis of bifurcation curves that correspond to the appearance of Shilnikov homoclinic loop of saddle-focus equilibrium states and, as a result, spiral chaos. To visualize the results, we use numerical methods for constructing charts of the maximal Lyapunov exponent and bifurcation diagrams obtained using the MatCont package.

Ключевые слова: Shilnikov bifurcation, spiral chaos, Lyapunov analysis.

MSC: 37G10, 37G35

Поступила в редакцию: 20.05.2021
Принята в печать: 09.06.2021

Язык публикации: английский

DOI: 10.20537/nd210202



Реферативные базы данных:


© МИАН, 2024