RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 2, страницы 253–287 (Mi nd792)

Mathematical problems of nonlinearity

The Thermodynamic Formalism and the Central Limit Theorem for Stochastic Perturbations of Circle Maps with a Break

A. Dzhalilova, D. Mayerb, A. Aliyevc

a Natural-Mathematical Science Department, Turin Polytechnic University, Kichik Halqa Yoli 17, Tashkent 100095, Uzbekistan
b Institut für Theoretische Physik, TU Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld, Germany
c V. I. Romanovsky Institute of Mathematics, Academy of Sciences, Beruniy street 369, Tashkent 100170, Uzbekistan

Аннотация: Let $T\in C^{2+\varepsilon}(S^{1}\setminus\{x_b^{}\})$, $\varepsilon>0$, be an orientation preserving circle homeomorphism with rotation number $\rho_T^{}=[k_1^{},\,k_2^{},\,\ldots,\,k_m^{},\,1,\,1,\,\ldots]$, $m\ge1$, and a single break point $x_b^{}$. Stochastic perturbations $\overline{z}_{n+1}^{} = T(\overline{z}_n^{}) + \sigma \xi_{n+1}^{}$, $\overline{z}_0^{}:=z\in S^1$ of critical circle maps have been studied some time ago by Diaz-Espinoza and de la Llave, who showed for the resulting sum of random variables a central limit theorem and its rate of convergence. Their approach used the renormalization group technique. We will use here Sinai's et al. thermodynamic formalism approach, generalised to circle maps with a break point by Dzhalilov et al., to extend the above results to circle homemorphisms with a break point. This and the sequence of dynamical partitions allows us, following earlier work of Vul at al., to establish a symbolic dynamics for any point ${z\in S^1}$ and to define a transfer operator whose leading eigenvalue can be used to bound the Lyapunov function. To prove the central limit theorem and its convergence rate we decompose the stochastic sequence via a Taylor expansion in the variables $\xi_i$ into the linear term $L_n^{}(z_0^{})= \xi_n^{}+\sum\limits_{k=1}^{n-1}\xi_k^{}\prod\limits_{j=k}^{n-1} T'(z_j^{})$, ${z_0^{}\in S^1}$ and a higher order term, which is possible in a neighbourhood $A_k^n$ of the points $z_k^{}$, ${k\le n-1}$, not containing the break points of $T^{n}$. For this we construct for a certain sequence $\{n_m^{}\}$ a series of neighbourhoods $A_k^{n_m^{}}$ of the points $z_k^{}$ which do not contain any break point of the map $T^{q_{n_m^{}}^{}}$, $q_{n_m^{}}^{}$ the first return times of $T$. The proof of our results follows from the proof of the central limit theorem for the linearized process.

Ключевые слова: circle map, rotation number, break point, stochastic perturbation, central limit theorem, thermodynamic formalism.

MSC: 37C05, 37C15, 37E05, 37E10, 37E20, 37B10

Поступила в редакцию: 30.11.2021
Принята в печать: 05.05.2022

Язык публикации: английский

DOI: 10.20537/nd220208



Реферативные базы данных:


© МИАН, 2024