RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 2, страницы 297–307 (Mi nd794)

Эта публикация цитируется в 1 статье

Mathematical problems of nonlinearity

On Almost Shadowable Measures

K. Leea, A. Rojasb

a Department of Mathematics, Chungnam National University, Daejeon 305-764, Republic of Korea
b Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530 21945-970, Rio de Janeiro, Brazil

Аннотация: In this paper we study the almost shadowable measures for homeomorphisms on compact metric spaces. First, we give examples of measures that are not shadowable. Next, we show that almost shadowable measures are weakly shadowable, namely, that there are Borelians with a measure close to 1 such that every pseudo-orbit through it can be shadowed. Afterwards, the set of weakly shadowable measures is shown to be an $F_{\sigma \delta}$ subset of the space of Borel probability measures. Also, we show that the weakly shadowable measures can be weakly* approximated by shadowable ones. Furthermore, the closure of the set of shadowable points has full measure with respect to any weakly shadowable measure. We show that the notions of shadowableness, almost shadowableness and weak shadowableness coincide for finitely supported measures, or, for every measure when the set of shadowable points is closed. We investigate the stability of weakly shadowable expansive measures for homeomorphisms on compact metric spaces.

Ключевые слова: Shadowable measures, Shadowable points, Homeomorphism.

MSC: 37C50, 28C15

Поступила в редакцию: 25.03.2022
Принята в печать: 24.04.2022

Язык публикации: английский

DOI: 10.20537/nd220210



Реферативные базы данных:


© МИАН, 2024