RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 2, страницы 309–328 (Mi nd795)

Mathematical problems of nonlinearity

Homotopy Analysis Method and Time-fractional NLSE with Double Cosine, Morse, and New Hyperbolic Potential Traps

U. Ghosha, T. Dasb, S. Sarkara

a University of Calcutta, Department of Applied Mathematics, 92 A. P. C. Road, Kolkata, India
b Kodalia Prasanna Banga High School (H.S.), South 24 Parganas 700146, India

Аннотация: A brief outline of the derivation of the time-fractional nonlinear Schrödinger equation (NLSE) is furnished. The homotopy analysis method (HAM) is applied to study time-fractional NLSE with three separate trapping potential models that we believe have not been investigated yet. The first potential is a double cosine potential $[V(x)=V_1^{}\cos x+V_2^{}\cos 2x]$, the second one is the Morse potential $[V(x)=V_1^{}e^{-2\beta x}+V_2^{}e^{-\beta x}]$, and a hyperbolic potential $[V(x)=V_0^{}\tanh(x)sech(x)]$ is taken as the third model. The fractional derivatives and integrals are described in the Caputo and Riemann Liouville sense, respectively. The solutions are given in the form of convergent series with easily computable components. A physical analysis with graphical representations explicitly reveals that HAM is effective and convenient for solving nonlinear differential equations of fractional order.

Ключевые слова: time fractional nonlinear Schrödinger equation (NLSE), homotopy analysis method (HAM), Caputo derivative, Riemann – Liouville fractional integral operator, trapping potential.

MSC: 34A08, 35A22, 26A33

Поступила в редакцию: 27.01.2021
Принята в печать: 14.02.2022

Язык публикации: английский

DOI: 10.20537/nd220211



Реферативные базы данных:


© МИАН, 2024