RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 3, страницы 423–439 (Mi nd803)

Nonlinear physics and mechanics

Approximate Weak Solutions to the Vorticity Evolution Equation for a Viscous Incompressible Fluid in the Class of Vortex Filaments

O. S. Kotsur, G. A. Shcheglov, I. K. Marchevsky

Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, str. 1, Moscow, 105005 Russia

Аннотация: This paper is concerned with the equation for the evolution of vorticity in a viscous incompressible fluid, for which approximate weak solutions are sought in the class of vortex filaments. In accordance with the Helmholtz theorem, a system of vortex filaments that is transferred by the flow of an ideal barotropic fluid is an exact solution to the Euler equation. At the same time, for viscous incompressible flows described by the system of Navier – Stokes equations, the search for such generalized solutions in the finite time interval is generally difficult. In this paper, we propose a method for transforming the diffusion term in the vorticity evolution equation that makes it possible to construct its approximate solution in the class of vortex filaments under the assumption that there is no helicity of vorticity. Such an approach is useful in constructing vortex methods of computational hydrodynamics to model viscous incompressible flows.

Ключевые слова: weak solution, vortex filament, helicity of vorticity, diffusion velocity, viscosity.

MSC: 76D05

Поступила в редакцию: 20.06.2022
Принята в печать: 05.08.2022

Язык публикации: английский

DOI: 10.20537/nd220307



Реферативные базы данных:


© МИАН, 2024