RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 4, страницы 589–607 (Mi nd813)

Nonlinear physics and mechanics

On the Orbital Stability of Pendulum Oscillations of a Dynamically Symmetric Satellite

B. S. Bardin, E. A. Chekina, A. M. Chekin

Moscow Aviation Institute, Volokolamskoye sh. 4, Moscow, 125080 Russia

Аннотация: The orbital stability of planar pendulum-like oscillations of a satellite about its center of mass is investigated. The satellite is supposed to be a dynamically symmetrical rigid body whose center of mass moves in a circular orbit. Using the recently developed approach [1], local variables are introduced and equations of perturbed motion are obtained in a Hamiltonian form. On the basis of the method of normal forms and KAM theory, a nonlinear analysis is performed and rigorous conclusions on orbital stability are obtained for almost all parameter values. In particular, the so-called case of degeneracy, when it is necessary to take into account terms of order six in the expansion of the Hamiltonian function, is studied.

Ключевые слова: rigid body, satellite, oscillations, orbital stability, Hamiltonian system, local coordinates, normal form.

MSC: 34D20, 37J40, 70K30, 70K45, 37N05

Поступила в редакцию: 10.11.2022
Принята в печать: 04.12.2022

Язык публикации: английский

DOI: 10.20537/nd221211



Реферативные базы данных:


© МИАН, 2024