RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 5, страницы 787–802 (Mi nd824)

Эта публикация цитируется в 2 статьях

Nonlinear engineering and robotics

Image-Based Object Detection Approaches to be Used in Embedded Systems for Robots Navigation

A. Ali Deeb, F. Shahhoud

Bauman Moscow State Technical University, ul. 2-ya Baumanskaya, Moscow, 105005 Russia

Аннотация: This paper investigates the problem of object detection for real-time agents’ navigation using embedded systems. In real-world problems, a compromise between accuracy and speed must be found. In this paper, we consider a description of the architecture of different object detection algorithms, such as R-CNN and YOLO, to compare them on different variants of embedded systems using different datasets. As a result, we provide a trade-off study based on accuracy and speed for different object detection algorithms to choose the appropriate one depending on the specific application task.

Ключевые слова: robot navigation, object detection, embedded systems, YOLO algorithms, R-CNN algorithms, object semantics.

MSC: 68T40, 68T45, 93C85

Поступила в редакцию: 15.09.2022
Принята в печать: 10.11.2022

Язык публикации: английский

DOI: 10.20537/nd221218



© МИАН, 2024