RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 5, страницы 915–926 (Mi nd833)

Nonlinear physics and mechanics

On the Stability of the System of Thomson’s Vortex $n$-Gon and a Moving Circular Cylinder

L. G. Kurakinabc, I. V. Ostrovskayac

a Water Problems Institute, RAS, ul. Gubkina 3, Moscow, 119333 Russia
b Southern Mathematical Institute, VSC RAS, ul. Vatutina 53, Vladikavkaz, 362025, Russia
c Southern Federal University, ul. Milchakova 8a, Rostov on Don, 344090, Russia

Аннотация: The stability problem of a moving circular cylinder of radius $R$ and a system of n identical point vortices uniformly distributed on a circle of radius $R_0$, with $n \geqslant 2$, is considered. The center of the vortex polygon coincides with the center of the cylinder. The circulation around the cylinder is zero. There are three parameters in the problem: the number of point vortices n, the added mass of the cylinder a and the parameter $q = \frac{R^2}{R^2_0}$.
The linearization matrix and the quadratic part of the Hamiltonian of the problem are studied. As a result, the parameter space of the problem is divided into the instability area and the area of linear stability where nonlinear analysis is required. In the case $n = 2, 3$ two domains of linear stability are found. In the case $n = 4, 5, 6$ there is just one domain. In the case $n \geqslant 7$ the studied solution is unstable for any value of the problem parameters. The obtained results in the limiting case as $a \rightarrow \infty$ agree with the known results for the model of point vortices outside the circular domain.

Ключевые слова: point vortices, Hamiltonian equation, Thomson’s polygon, stability.

MSC: 37J25, 76B47, 76M23

Поступила в редакцию: 19.08.2022
Принята в печать: 09.11.2022

Язык публикации: английский

DOI: 10.20537/nd221217



Реферативные базы данных:


© МИАН, 2024