RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2023, том 19, номер 1, страницы 49–58 (Mi nd838)

Nonlinear physics and mechanics

Analysis of Stationary Points and Bifurcations of a Dynamically Consistent Model of a Two-Dimensional Meandering Jet

A. A. Udalov, M. Yu. Uleysky, M. V. Budyansky

Pacific Oceanological Institute of the Russian Academy of Sciences ul. Baltiyskaya 43, Vladivostok, 690041 Russia

Аннотация: A dynamically consistent model of a meandering jet stream with two Rossby waves obtained using the law of conservation of potential vorticity is investigated. Stationary points are found in the phase space of advection equations and the type of their stability is determined analyti- cally. All topologically different flow regimes and their bifurcations are found for the stationary model (taking into account only the first Rossby wave). The results can be used in the study of Lagrangian transport, mixing, and chaotic advection in problems of cross-frontal transport in geophysical flows with meandering jets.

Ключевые слова: stationary points, separatrices reconnection, jet flow.

MSC: 76B65, 37J99

Поступила в редакцию: 25.04.2022
Принята в печать: 08.07.2022

Язык публикации: английский

DOI: 10.20537/nd220802



Реферативные базы данных:


© МИАН, 2024