RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2023, том 19, номер 4, страницы 575–584 (Mi nd866)

Mathematical problems of nonlinearity

A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation

M. V. Gasanova, A. G. Gulkanovb

a Moscow State University of Civil Engineering, Yaroslavskoe shosse 26, Moscow, 129337 Russia
b Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133 Italy

Аннотация: This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.

Ключевые слова: nonlinear differential equations, movable singular point, exact criteria of exis- tence, necessary and sufficient conditions, Cauchy problem

MSC: 34G20, 34A05, 34A25

Поступила в редакцию: 16.06.2023
Принята в печать: 29.08.2023

Язык публикации: английский

DOI: 10.20537/nd230904



© МИАН, 2024