RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2023, том 19, номер 4, страницы 533–543 (Mi nd872)

Nonlinear physics and mechanics

The Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint

A. A. Kilin, T. B. Ivanova

Ural Mathematical Center, Udmurt State University ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: This paper investigates the problem of a sphere with axisymmetric mass distribution rolling on a horizontal plane. It is assumed that the sphere can slip in the direction of the projection of the symmetry axis onto the supporting plane. Equations of motion are obtained and their first integrals are found. It is shown that in the general case the system considered is nonintegrable and does not admit an invariant measure with smooth positive density. Some particular cases of the existence of an additional integral of motion are found and analyzed. In addition, the limiting case in which the system is integrable by the Euler – Jacobi theorem is established.

Ключевые слова: nonholonomic constraint, first integral, nonintegrability, Poincaré map

MSC: 70E18, 70K25

Поступила в редакцию: 02.11.2023
Принята в печать: 10.12.2023

Язык публикации: английский

DOI: 10.20537/nd231201



© МИАН, 2024