Аннотация:
В работе изучаются неодномерные структуры, описываемые нелинейным уравнением Шрëдингера с дополнительным потенциалом. Предлагается метод численного построения структур такого типа, основанный на динамической интерпретации исходного уравнения. Приводятся точные утверждения, позволяющие в некоторых случаях провести доказательные вычисления, перечислив все типы возможных структур. Физические аспекты рассматриваемой задачи связаны с теорией конденсата Бозе–Эйнштейна, где рассматриваемое уравнение называется уравнением Гросса–Питаевского, а исследуемые структуры соответствуют макроскопической волновой функции конденсата.