Аннотация:
В терминах функций Ляпунова получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в заранее заданном множестве $\mathfrak M$. Если относительная частота пребывания в $\mathfrak M$ равна единице, то множество $\mathfrak M$ названо статистически инвариантным. Получены также условия, при которых $\mathfrak M$ статистически слабо инвариантно относительно управляемой системы, т.е. для каждой начальной точки из $\mathfrak M$ по крайней мере одно решение управляемой системы статистически инвариантно. Найдены условия неблуждаемости множества достижимости и условия существования минимального центра притяжения.
Ключевые слова:управляемые системы, динамические системы, дифференциальные включения, достижимость, инвариантность, неблуждаемость, рекуррентность.