Аннотация:
В работах [1]-[3] рассматриваются различные аспекты построения инвариантной (или квазиинвариантной) меры для нелинейного уравнения Клейна-Гордона. Для уравнения Эйлера движения идеальной жидкости инвариантная мера типа меры Гиббса была построена С.Альбеверио, М.Фариа, Р.Хоег-Кроном [4]. Из рассмотрения задач евклидовой квантовой теории поля ряд важных результатов получен И.Д.Чешуевым [5]. В данной работе конструкция [2] переносится на случай нелинейного уравнения Шредингера. Для гамильтоновой динамической системы, порожденной этим уравнением, на расширенном фазовом пространстве строится инвариантная мера типа меры Гиббса. Доказывается слабая сходимость к этой мере последовательности ее конечномерных аппроксимаций. Возможны обобщения этой конструкции и на другие бесконечномерные гамильтоновы системы.