Аннотация:
Let $p\in(2,+\infty],$$n\ge1$ and $\Delta=(\Delta_1,\ldots,\Delta_n),$$\Delta_k>0,$$1\le k\le n.$ It is proved that for functions
$\gamma(t)\in L^p(R^n)$ spectrum of which is separated from each of
$n$ the coordinate hyperplanes on the distance not less than
$\Delta_k,$$1\le k\le n$ respectively, the inequality is valid:
$$\left\|\int\limits_{E_t}\gamma(\tau)\,d\tau\right\|
_{L^{\infty}(R^n)}\le C^n(q)\left[\prod_{k=1}^n\frac{1}
{\Delta_k^{1/q}}\right]\left\|\gamma(\tau)\right\|_{L^p(R^n)},$$
where $t=(t_1,\ldots,t_n)\in R^n,$
$E_t=\{\tau\,|\,\tau=(\tau_1,\ldots,\tau_n)\in R^n,$
$\tau_j\in[0,t_j],$ if $t_j\ge0,$ and $\tau_j\in[t_j,0],$ if
$t_j<0,\ 1\le j\le n\},$ and the constant $C(q)>0,$$\displaystyle\frac{1}{p}+ \frac{1}{q}=1$ does not depend on
$\gamma(\tau)$ and vector $\Delta$.