RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2015, том 4(22), выпуск 1, страницы 57–65 (Mi pa188)

Certain inequalities involving the $q$-deformed Gamma function

K. Nantomaha, E. Prempehb

a University for Development Studies, P. O. Box 24, Navrongo, UE/R, Ghana
b Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Аннотация: This paper is inspired by the work of J. Sándor in 2006. In the paper, the authors establish some double inequalities involving the ratio $ \frac{\Gamma_{q}(x+1)}{ \Gamma_{q} \left( x+\frac{1}{2}\right)}$, where $\Gamma_{q}(x)$ is the $q$-deformation of the classical Gamma function denoted by $\Gamma(x)$. The method employed in presenting the results makes use of Jackson's $q$-integral representation of the $q$-deformed Gamma function. In addition, Hölder's inequality for the $q$-integral, as well as some basic analytical techniques involving the $q$-analogue of the psi function are used. As a consequence, $q$-analogues of the classical Wendel's asymptotic relation are obtained. At the end, sharpness of the inequalities established in this paper is investigated.

Ключевые слова: Gamma function, $q$-deformed Gamma function, $q$-integral, inequality.

УДК: 517.51, 517.58

MSC: 33B15, 33D05

Поступила в редакцию: 05.11.2014
Исправленный вариант: 15.06.2015

Язык публикации: английский

DOI: 10.15393/j3.art.2015.2629



Реферативные базы данных:


© МИАН, 2024