RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2016, том 5(23), выпуск 2, страницы 3–19 (Mi pa198)

The Damascus inequality

F. M. Dannana, S. M. Sitnikbc

a Department of Basic Sciences, Arab International University, P.O.Box 10409, Damascus , Syria
b Voronezh Institute of the Ministry of Internal Affairs of Russia, 53, Patriotov pr., Voronezh, 394065, Russia
c Peoples' Friendship University of Russia, 6, Miklukho–Maklaya st., Moscow, 117198, Russia

Аннотация: In 2016 Prof. Fozi M. Dannan from Damascus, Syria, proposed an interesting inequality for three positive numbers with unit product. It became widely known but was not proved yet in spite of elementary formulation. In this paper we prove this inequality together with similar ones, its proof occurred to be rather complicated. We propose some proofs based on different ideas: Lagrange multipliers method, geometrical considerations, Klamkin-type inequalities for symmetric functions, usage of symmetric reduction functions of computer packages. Also some corollaries and generalizations are considered, they include cycle inequalities, triangle geometric inequalities, inequalities for arbitrary number of values and special forms of restrictions on numbers, applications to cubic equations and symmetric functions.

Ключевые слова: cycle inequalities; Lagrange method; geometric inequalities; symmetric reduction.

УДК: 517.165

MSC: 26D15

Поступила в редакцию: 06.11.2016
Исправленный вариант: 04.12.2016
Принята в печать: 05.12.2016

Язык публикации: английский

DOI: 10.15393/j3.art.2016.3350



Реферативные базы данных:


© МИАН, 2024