RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2018, том 7(25), выпуск 1, страницы 87–103 (Mi pa226)

Эта публикация цитируется в 10 статьях

Coefficient problems on the class $U(\lambda)$

Saminathan Ponnusamya, Karl-Joachim Wirthsb

a Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
b Institut für Analysis und Algebra, TU Braunschweig, 38106 Braunschweig, Germany

Аннотация: For $0<\lambda \leq 1$, let ${\mathcal U}(\lambda)$ denote the family of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ analytic in the unit disk $\mathbb{D}$ satisfying the condition $\left |\left (\frac{z}{f(z)}\right )^{2}f'(z)-1\right |<\lambda $ in $\mathbb{D}$. Although functions in this family are known to be univalent in $\mathbb{D}$, the coefficient conjecture about $a_n$ for $n\geq 5$ remains an open problem. In this article, we shall first present a non-sharp bound for $|a_n|$. Some members of the family ${\mathcal U}(\lambda)$ are given by
$$ \frac{z}{f(z)}=1-(1+\lambda)\phi(z) + \lambda (\phi(z))^2 $$
with $\phi(z)=e^{i\theta}z$, that solve many extremal problems in ${\mathcal U}(\lambda)$. Secondly, we shall consider the following question: Do there exist functions $\phi$ analytic in $\mathbb{D}$ with $|\phi (z)|<1$ that are not of the form $\phi(z)=e^{i\theta}z$ for which the corresponding functions $f$ of the above form are members of the family ${\mathcal U}(\lambda)$? Finally, we shall solve the second coefficient ($a_2$) problem in an explicit form for $f\in {\mathcal U}(\lambda)$ of the form
$$f(z) =\frac{z}{1-a_2z+\lambda z\int\limits_0^z\omega(t)\,dt}, $$
where $\omega$ is analytic in $\mathbb{D}$ such that $|\omega(z)|\leq 1$ and $\omega(0)=a$, where $a\in \overline{\mathbb{D}}$.

Ключевые слова: Univalent function; subordination; Julia's lemma; Schwarz' lemma.

УДК: 517.54

MSC: 30C45

Поступила в редакцию: 26.12.2017
Исправленный вариант: 10.03.2018
Принята в печать: 12.03.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2018.4730



Реферативные базы данных:


© МИАН, 2024