Эта публикация цитируется в
10 статьях
Coefficient problems on the class $U(\lambda)$
Saminathan Ponnusamya,
Karl-Joachim Wirthsb a Department of Mathematics,
Indian Institute of Technology Madras,
Chennai-600 036, India
b Institut für Analysis und Algebra,
TU Braunschweig,
38106 Braunschweig, Germany
Аннотация:
For
$0<\lambda \leq 1$, let
${\mathcal U}(\lambda)$ denote the family of
functions
$f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$
analytic in the unit disk
$\mathbb{D}$ satisfying the condition $\left |\left (\frac{z}{f(z)}\right )^{2}f'(z)-1\right |<\lambda $
in
$\mathbb{D}$. Although functions in this family are known to be univalent in
$\mathbb{D}$, the coefficient conjecture about
$a_n$
for
$n\geq 5$ remains an open problem. In this article, we shall
first present a non-sharp bound for
$|a_n|$. Some members of the family
${\mathcal U}(\lambda)$ are given by
$$ \frac{z}{f(z)}=1-(1+\lambda)\phi(z) + \lambda (\phi(z))^2
$$
with
$\phi(z)=e^{i\theta}z$, that solve many extremal problems
in
${\mathcal U}(\lambda)$. Secondly, we shall consider the following question: Do there exist functions
$\phi$ analytic in
$\mathbb{D}$ with
$|\phi (z)|<1$ that are not of the form
$\phi(z)=e^{i\theta}z$
for which the corresponding functions
$f$ of the above form are members of the family
${\mathcal U}(\lambda)$?
Finally, we shall solve the second coefficient (
$a_2$) problem in an explicit form for
$f\in {\mathcal U}(\lambda)$
of the form
$$f(z) =\frac{z}{1-a_2z+\lambda z\int\limits_0^z\omega(t)\,dt},
$$
where
$\omega$ is analytic in
$\mathbb{D}$ such that
$|\omega(z)|\leq 1$ and
$\omega(0)=a$, where
$a\in \overline{\mathbb{D}}$.
Ключевые слова:
Univalent function; subordination; Julia's lemma; Schwarz' lemma.
УДК:
517.54
MSC: 30C45 Поступила в редакцию: 26.12.2017
Исправленный вариант: 10.03.2018
Принята в печать: 12.03.2018
Язык публикации: английский
DOI:
10.15393/j3.art.2018.4730