RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2018, том 7(25), спецвыпуск, страницы 72–87 (Mi pa233)

Эта публикация цитируется в 2 статьях

Singular points for the sum of a series of exponential monomials

O. A. Krivosheevaa, A. S. Krivosheevb

a Bashkir State University, 32 Z. Validi, Ufa 450076, Russia
b Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Science, 112 Chernyshevsky str., Ufa 450008, Russia

Аннотация: A problem of distribution of singular points for sums of series of exponential monomials on the boundary of its convergence domain is studied. The influence of a multiple sequence $\Lambda=\{\lambda_k, n_k \}_{k=1}^\infty$ of the series in the presence of singular points on the arc of the boundary, the ends of which are located at a certain distance $R$ from each other, is investigated. In this regard, the condensation indices of the sequence and the relative multiplicity of its points are considered. It is proved that the finiteness of the condensation index and the zero relative multiplicity are necessary for the existence of singular points of the series sum on the $R$-arc. It is also proved that for one of the sequence classes $\Lambda$, these conditions give a criterion. Special cases of this result are the well-known results for the singular points of the sums of the Taylor and Dirichlet series, obtained by J. Hadamard, E. Fabry, G. Pólya, W.H.J. Fuchs, P. Malliavin, V. Bernstein and A. F. Leont'ev, etc.

Ключевые слова: invariant subspace, series of exponential monomials, singular point, convex domain.

УДК: 517.52, 517.53

MSC: 30D10

Поступила в редакцию: 11.05.2018
Исправленный вариант: 29.08.2018
Принята в печать: 31.08.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2018.5310



Реферативные базы данных:


© МИАН, 2024