RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 1, страницы 72–83 (Mi pa259)

The method of normal local stabilization

A. N. Kirillovab

a Institute of Applied Mathematical Research of the Karelian Research Centre of the Russian Academy of Sciences, 11, Pushkinskaya str., Petrozavodsk 185910, Russia
b Petrozavodsk State University, 33 Lenina pr., Petrozavodsk 185910, Russia

Аннотация: A problem of nonlinear systems stabilization is studied. Admissible controls are piecewise constant. The notion of normal local stabilizability is proposed. A point $P$ (not necessary equilibrium) is normally locally stabilizable if for any $\tau>0$ there exists such neighborhood $D(P;<\tau)$ of $P$ that any point $x \in D(P;<\tau)$ can be steered, in a time less than $\tau$, to any neighborhood of $P$ and remains there. The constructive method of normal local stabilization of nonlinear autonomous systems is presented. This method involves a special sequence of contracting cylinders containing a trajectory. A domain of attraction of a given point is constructed.

Ключевые слова: dynamical system, positive basis, normal stabilization.

УДК: 517.977

MSC: 34H15

Поступила в редакцию: 01.04.2018
Исправленный вариант: 10.07.2018
Принята в печать: 14.08.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2019.4610



Реферативные базы данных:


© МИАН, 2024