Аннотация:
Let $C$ be the unit circle $\{z:|z|=1\}$ and $Q_n(z)$ be an arbitrary $C$-polynomial (i.e., all its zeros $z_1,\dots, z_n\in C$).
We prove that the norm of the logarithmic derivative $Q_n'/Q_n$ in the complex space $L_2[-1, 1]$ is greater than $1/8$.
Ключевые слова:logarithmic derivative, $C$-polynomial, simplest fraction, norm, unit circle.